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Abstract

Travel-times of acoustic signals were measured between a bottom-mounted source near

Oahu and four bottom-mounted receivers located near Washington, Oregon, and Cali-
fornia in 1988 and 1989. This paper discusses the observed tidal signals. At three out
of four receivers, observed travel times at M2 and S2 periods agree with predictions
from barotropic tide models to within ±30' -in phase and a factor of 1.6 in amplitude.
The discrepancy at the fourth receiver can be removed by including predicted effects of
phase-locked baroclinic tides generated by seamounts.

Our estimates of barotropic M2 tidal dissipation by seamounts vary between 2 x 10"6
and 1 x 1018 erg-s- 1. The variation by two orders of magnitude is due to uncertainties in
the numbers and sizes of seamounts. The larger dissipation (1 x 1018 erg.s - 1) is the same
order as previous estimates and amounts to 4 % of the total dissipation at M2.
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Chapter 1

Introduction

We measure travel-times of acoustic signals between a bottom-mounted source near Oahu

and four bottom-mounted receivers located near Washington, Oregon, and California

in 1988 and 1989 (Figure 1-1). The power-spectra of basin-scale travel-times exhibit

prominent variability at tidal periods [Spiesberger et al., 1989b]. There are two important

reasons for further study of the tidal signals. First, numerical models for barotropic

tides can be validated by using these new observations. Second, it is important to detide

tomography data to better study other ocean fluctuations at similar periods [Spicsberger

et al., 1989b].

The tides can be separated into barotropic and baroclinic modes, and their associated

influences on travel-time can be separated into current and displacement effects. The tidal

currents affect travel-time by alternating between alliance and opposition to the direction

of sound propagation. The rise and fall of the water column affects the travel-time by

causing periodic vertical iso-therm displacements and pressure fluctuations. lVorccster

et al. [1990] has shown that barotropic current effects can be quantified by using recip-

rocal transmissions; one-way transmissions are used in this experiment, so we quantify

barotropic effects by comparing measured data to barotropic tide model predictions.

We find that acoustic travel-times computed from barotropic tidal models are similar

to observations at three out of four receivers. The discrepancy at the fourth receiver

can be understood by including the effects of phase-locked baroclinic tides generated by

seamounts near the transmission path. Generation mechanisms are important both for
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Figure 1-1: The acoustic tomography experiments of 1988 and 1989 consist of a source

located near Kaneohe Bay, Oahu, and four bottom receivers (R1 to R4) whose approximate

positions are shown. The distances between source and receivers are all about 4000 km.



understanding the distribution of internal wave energy and the energy budget of tidal

dissipation [Munk, 1966; Wunsch, 1975; Bell, 1975; Larnbeck, 1980; Hendcrshott, 1981].

This report closely follows Headrick et al. [19901 and is organized as follows. Chapter

2 discusses the experiment and the estimation of acoustic travel-time. Comparisons be-

tween observations and predictions from barotropic and baroclinic tide models are made

in Chapter 3. Chapter 4 predicts the global dissipation of tidal energy at A12 due to

seamounts. Conclusions follow in Chapter 5.

10



Chapter 2

Data Acquisition

The travel-time differences of pulse-like signals are measured at 3 minute intervals in

1988 and 2 minute intervals in 1989 between the source at Oahu and the four receivers

(Figure 1-1). Travel-times are intermittently measured for a total of between four and

eight months (Figure 2-1). The transmission distances are about 4000 km and the transit

times are about 40 minutes.

Spiesberger et al. [1989a,b] describes the maximum likelihood estimator of phase

differences used to estimate differences in travel-time. The basic process is outlined in

Appendix D. With this estimator, the change in acoustic phase at 133 Hz, 60, is related

to the travel-time difference, b7, by,

b7- 27rt (2.1)

where w, = 27r. 133 (rad.s - 1 ) is the center radian frequency of the transmitted signal, w is

the radian frequency of the travel-time oscillation, and At is the geophysical time interval

over which travel-time differences are measured (184 s in 1988, 122 s in 1989) [Spiesberger

et al., 1989a].

II
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Figure 2-1: Shaded regions indicate the times when tomographic data were recorded at

each of the receivers.
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Chapter 3

Data Analysis

3.1 Barotropic Model for Acoustic travel-time

Tle Change in acoustic travel-time due to barotropic tides is given by,

A7T, (f, -Y = t - . + k j t hds (3.1)

where the geophysical time at the receiver is t, the geodesic between the source and

receiver is FH, and the mean sound speed is co. The barotropic current and surface

displacement at location z on the geodesic at time t are denoted by ft(., t - I_-) and

(( . , I -,t ) respectively. The incremental on the geodesic is ds, and 1(s) is the distance
Co-

frorm the receiver. The constant is k, = 3.9 x 10- 3 [Spiesberger el al., 1989b]. The effects
of finite propagation time are taken into account by the correction term (- ). The finite

Co

propagation delay amounts to a phase correction of order ±100 at semidiurnal periods.

The first term in (3.1) contains the effect of propagating sound with and against

the tidal current. The second term, which amounts to a 1 or 2 ins correction, contains

the combined effects of vertical iso-therm displacement and pressure fluctuations which

accompany the rise and fall of the sea surface. For barotropic tides the travel-time change

is al)out the same for different acoustic multipaths [Spiesberger et al., 1989a.].

The elevation, (, is obtained from the Naval Surface Weapons Center (NSWC) tide

model derived by Schwidcrski [1978]. Unfortunately, except for M2, NSWC models of the

ti(Ial current field are unavailable. We therefore use a linearized version of Schwidcrski's

13



[1978] laplaCe tidal equations (1,11") to predict tidal currents. I'le equations are,

a, = 2Q cos #v + Re Smi a 1 - 14)] -

(3.2)

7T 2Q cos u - [- L(a7y -13)] kdv,

where A and 0 are longitude and colatitude respectively, u and v are east and north

current speeds respectively, 77 is Newton's equilibrium tide (which is proportional to the

astronomical tide generating potential), g is the earth's gravitational attraction, R, is

the radius of a spherical earth, Q is the Earth's angular rate of rotation, and kd is a

damping coefficient. The constants a and 0 derived by Schwiderski [1978] correct for the

solid-earth tide, ocean tidal loading of the solid earth, and the associated gravity potential

perturbations of all tides and loadings. The solution to (3.2) for u and v is outlined in

Appendix A.

Equation (3.1) is decomposed into contributions from each tidal frequency, Wk, of

interest, and solutions are determined by collecting and integrating sinwkt and coswkt

terms separately. The resulting travel-time change model is,

K

ATbt(t, FRi) E3 ek(rR) Cos Wkt + fk(FR) sin Wkt, (3.3)
k=l

where ek(IR) and fk(FR) are the solutions to the separated integrals, and A' is the total

number of tidal frequencies calculated.

3.2 Barotropic Model Comparisons with Observed Tidal

Signals

3.2.1 Tidal Signal Estimation

Power-spectra of the differences in acoustic-phase exhibit prominent variability at tidal

periods [Spiesbcrgcr et al., 1989a,b] (Figure 3-1). For each receiver, tidal signals are

estimate(] by fitting the 8 most prominent tidal components to the data (Appendix A,

Table A.1). Specifically, we determine ak and bk; k = 1,2,... ,8, in,

8

60(0, I'll) = -ak(l'R)coswktn + bk(I'n)sinwkt; n = 1,2,... ,N, (3.4)
k=l
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Figure 3-1: Power spectral density estimate for the 133 Hz phase-differences at receiver

R2. This periodogram uses a Bartlett data window with 42 days of data obtained in 1988.

The tidal peaks at the K1, M2, and S2 frequencies have rms values which correspond to

travel-time change amplitudes of 8.6, 23.5, and 12.3 milliseconds respectively.

by linear least squares [Lawson and Hanson, 1974], where the phase-differences are mea-

sured at times t, and the total number of measurements equals N. Depending on the

receiver, N equals 55,000 to 135,000, so the least squares problem is overdetermined.

Each least-squares fit to phase-differences is compared to barotropic model travel-times

to determine how much of the signal can be attributed to barotropic tidal effects.

3.2.2 Comparison with Model

Assuming all of the (3.4) signal is due to barotropic influences, each tidal component

is proportional to the time derivative of the corresponding (3.3) model. Comparisons

between observations and the barotropic model are illustrated by the phasors of Figure

3-2. Each phasor magnitude corresponds to a data-to-model signal amplitude ratio, which

15



RI R2 R3 R4
Frequency Amp(nis) Amp(ins) Amp(ms) Amp(ms)

M2 26 22 15 7

52 11 7 4 3

'l 110 7 1 3

Table 3.1: Predicted acoustic signal amplitudes for barotropic tides. The model ampli-

tudes, (e + fk)1/ 2 , are determined from the constants in (3.3) and have rms errors of

about 2 ins.

from (2.1) is,
27r(a~ 2± b 2) 1/ 2

WWkAt (C2 + fk )l1/2 '

and each phasor angle corresponds to a difference between data and model signal phases,

which is given by,

tan_, (a) - tan (ek) +r

3.2.3 Analysis

First, we discuss the comparison at two semidiurnal periods (M2 and S2). Predicted tidal

amplitudes vary from 3 to 26 ms at our receivers (Table 3.1). At receivers R1, R2, and

R3, observed amplitudes are 0.8 to 1.6 times predicted amplitudes (Figure 3-2). At R4

the observed amplitudes are 2.4 and 3.4 times predictions. Predicted and observed phases

are within ±30' at R1, R2, and R3 but differ by up to 47' at R4. Data at RI, R2, and R3

agree with predictions from the barotropic model to first order, but at R4, the barotropic

model is inadequate. We return to this problem in the next section.

We next discuss the comparisons for one semidiurnal period (K1). The models for

barotropic currents at diurnal periods are inaccurate within a ±10' band centered at 30'

N (Appendix A). The transmissions to all receivers intersect this band, so comparisons

between predictions an(l observations are problematic. Nonetheless, predictions at Ri

16
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Figure 3-2: Comparison of phase and amplitude of measured and predicted tidal signals

at four receivers (RI to R4) and three frequencies (M2, S2, Ki). Predicted tidal signals

are obtained from the barotropic model given by (3.1). Each vector angle corresponds to

a measurement phase that leads the predicted phase by the indicated amount. The unit

circle in the upper left hand corner illustrates the vector angle convention. Vector magni-

tude corresponds to the ratio of measured amplitude to predicted amplitude. Predicted

magnitudes are listed in Table 3.1. An exact match between measurement and prediction

is represented by a vector of angle zero and length one (tip just touching the unit circle at

zero degrees). Solid arrows correspond to measurements of the combined 1988 and 1989

record, and the dashed arrows correspond to separate 1988 and 1989 data measurements.
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and R2 resenible observations at tidal period( K1 (Figure 3-2). It may be that lR] art(I

R2 tidal signais are similar to predictions because their transmission paths travel smaller

distances within 30" ± 10' N than paths to R3 and RI (Figure 1).

3.3 Baroclinic Tide Prediction

3.3.1 Phase-Stable Internal Tides

Apart from generation regions, baroclinic tides are not phase-locked to the ATGF, and

their phases are incoherent at 100 km distance (approximately an internal tide wavelength)

[Ilendershott,1981]. In generation regions, baroclinic tides may be phase-locked to the

ATGF [Munk el al., 1981]. Open ocean evidence of this phase-lock is seen in a phase-

stable A2 baroclinic tide over a large guyot east of Hawaii [Noble et al., 1988]. The

transmission path to R4 passes within a few hundred kilometers of several large sealnounts,

one of which is indicated in Figure 1-1. We hypothesize that the semidiurnal signals at

R4 do not agree with predictions from the barotropic model because of the presence of

phase-locked baroclinic tides near the seamounts.

The transmission paths to R1, R2, and R3 may be near other large seamounts, but

because there are no large discrepancies between the data and barotropic model predic-

tions, it is unlikely that internal tides play a zero order role in determining tidal signals

at these receivers.

Appendix B summarizes a model for the generation of baroclinic tides from the inter-

action between barotropic currents and seamounts. For baroclinic tides, acoustic travel-

times are modulated by sound-speed fluctuations associated with vertical straining of

iso-tachs [Spiesberger et al., 1989b]. The effect for the jth acoustic multipath, FR(j), is,

i f" 1'n(F (F) d r(.5
ATb¢(t, FR(j)) = c R) -- (3.5)

where the position along the multipath is F, the vertical displacement of the internal tide

is (int, and the vertical derivative of the potential sound-speed is

18



,12 ,S2

A in pl it ude( is) Phase(") A inplitude( Ins) PhIiase(
Blarotropic Model 7 113 3 32.1
Baroclinic Model 20 117 5 265
Combined Model 27 116 7 296

Measured Datia 24 ± 1 114 + 1 7 ± 0.1 279 ± 1

Table 3.2: Comparison of predicted and observed travel-time changes at 12 and S2 for

receiver R. The uncertainties on the measured data are based on the differences between
1988 and 1989 least-square fits. Phases are based on a sin wt time dependence with I = 0
at 0000 Greenwich mean time on I January 1989.

3.3.2 Influence on Travel-Time at Receiver R4

Being the southern-most receiver, R4 has a more east-west oriented ray path than the other

receivers. This orientation results in a weaker influence from the generally north-south

oriented A12 and S2 barotropic tidal currents, so the effects of phase-locked baroclinic

tides are more apparent. The predicted M2 baroclinic tide, generated from one of several

seamounts near the transmission path to R4 (Figure 1-1), has an amplitude and wave-

length of 6.2 m and 98 km respectively (Appendix B) and produces a 21 ms amplitude

travel-time signal (Appendix C).

The sum of the predicted M2 baroclinic tidal signals, generated from all prominent

seamnounts along the transmission path, is added to the barotropic prediction. The

barotropic plus baroclinic prediction for R4 is almost identical to observations at M2

and S2 (Figure 3-3 and Table 3.2). The prediction is improved at K2 but not at N2

(Table 3.3). The frequency at N2 is close to A12 (Table A.1), and the observed amplitude

at N2 is small. We suspect that the barotropic plus baroclinic prediction does not fit

observations at N2, because strong baroclinic tides at A2 may be smeared into N2 by

dynamic processes [llcndershott, 1981].

19
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Figure 3-3: The phasors on the left are identical to the combined 1988 and 1989 R4 record

pha.sors shown in Figure 3-2. The phasors on the right present the same analysis using

the combined barotropic and baroclinic models in Table 3.2.

N2 K2

Amplitude(ms) Phase(') Amplitude(ms) Phase(')

Barotropic Model 1 37 1 153
Baroclinic Model 6 315 3 117
Combined Model 6 325 4 126

Measured Data 2 ± 1 331 + 38 5 ± 2 153 ± 18

Table 3.3: Same as Table 3.2, except comparisons are at N2 and K2 frequencies.

20



Chapter 4

Tidal Dissipation

The effect of the ocean tidal bulge on the Earth-Moon system is a well known phenomena

that is discussed extensively by Lambeck [1980]. The friction-induced phase lag between

( and 71 produces a torque in the Earth-Moon system that is responsible for the length-

ening of the day and recession of the Moon at rates of about 1.8 ms.century - 1 and 3.7

n-century - 1 respectively [Christodoulidis, et al. 1988]. The applied torque transfers an

amount of orbital momentum to the Moon equal to the rotational momentum lost by the

Earth [Lambcck, 1977]. The net result of this momentum transfer is an overall reduction

in system kinetic and potential energy. System energy is dissipated for tue most part

in oceanic tides, with some fraction (which has yet to be quantified) occurring through

conversion to baroclinic tides [Larnbeck, 1980]. In this chapter we estimate the barotropic-

to-baroclinic conversion rate of the M2 tide at seamounts.

4.1 Tidal Dissipation at M2 from Satellite Observations

The rate of energy dissipation is,

dE df T dn -d- = (5.86 dt - 9.58d-)1040 erg • s-1, (4.1)

where E is the total tidal acceleration of the Earth and 7F is the acceleration of the

Moon's orbit in rad . s - 2 [Lambeck, 1977]. Recent estimates for M2 accelerations have

21



been obtained from the orbital )erturbations of 17 satellites, and have values given Iby,

= -1.15 x l(- 2 rmd . S- 2 .
it (.1.2)

-9.73 x lO- 2rad s-2 ,

[Ohris odoulidis, 0 al., 1988]. Substituting (4.2) into (4.1) yields 2.5 x 101 erg-s-i at A12

(about 75 % of all tidal dissipation).

4.2 Tidal Dissipation by Seamounts

We, consider two mod(hls for the (listributions of seaniounts. In the first model the numl)er

of seamounts with a basal radius r > R (kin) is given by,

N(R) = 1.4.1 x !()exp[-0.631?]. (,I.3)

Equation (1.3) is an extrapolation of Jordan c al. 's [1983] results, for the eastern Pacific,

to the world ocean. In the second model, the number of seamounts is estimated from

altimeter measurements by Seasat [Craig and Sandwell, 1988]. Seasat detects many large

seamounts which are absent in the model by Jordan et al. [19831, but it does not detect

small seamounts, as the altimeter profile sensitivity to seamounts falls off rapidly below a

basal radius of 20 km [Craig ct al., 1988]. These two seamount distributions are outlined

in Ta)le 1.1.

The rate of energy conversion from barotropic to baroclinic tides at each seamount is

ap p roxi m a tely,
dEdi- = 2(Ax)e.q (4.4)

where Ax is the horizontal dimension of each seamount perpendicular to the direction of

barotropic current, c9 i is the group speed of the internal tide (Equation (B.22)), and , is

the average energy density of the internal tide (Equation (B.21)). The dimension, Ax, is

obtained from the seamount's basal radius according to Table 4.2. If we take the barotropic

current speed to equal 2 cm-s - 1 and the inertial frequency to equal 0.73 x 10- 4 s - 1 (300

N), then equations (4.4) and (13.23) yield a total energy conversion rate of 2 x 1016 and

I x 1018 erg-s - 1 for the exponential and Seasat distributions respectively. These estimates

are proportional to Ax and the squares of both seamount height and the barotropic

22



Number of Seamounts
Basal Radius Exponential Seasat

r(kln) Model Model
1 -2 360,000 0
2-4 290,000 0
4 -6 83,000 0
6- 10 30,000 200

10- 15 2500 1200
15-20 110 6000
20-26 5 8800
26-32 0 6800
32 - 38 0 4800
38 - 44 0 2800
44 - 50 0 1600

Table 4.1: Seamount distribution for the world's oceans as a function of basal radius by
Jordan et al. [1983] (exponential model) and Craig and Sandwell [19881 (Seasat model).
The Seasat model is obtained by converting Craig and Sandwell's [1988] histogram of
peak-to-trough separation, p, to basal radius using r=(0.83)p in accordance with mea-
sured seamount slopes. The numbers so obtained are multiplied by four to account for
undetected seamounts [Craig et al., 1988]. Some of the discrepancy between models may
be due to large seamounts in the western Pacific that were not represented in the Jordan
et al. [1983] survey.

Rectangular Seamount Dimensions
Exponential Seasat

Dimension Model Model
Ax (0.62)r (0.62)r
Az (0.21)r 2500 m

Table 4.2: Seamount dimensions for the exponential and Seasat models (Table 4.1). The
length and width of each seamount is Ax, and the height is Az. Basal radius is denoted
by r. The scale factor for Ax, (0.62), is derived from a mean flatness of 0.31 reported for
85 seamounts in the Pacific [Smith, 1988]. The Az scale factor for the exponential model
is derived from the mean height-to-basal-radius ratio of 0.21 [Smith, 1988]. The height is
set to 2500 m for the Seasat model.

23



current speed (Equation (13.23)). The exponential model yields insignificant dissipation

because it contains relatively few wide seamounts (Table 4.1 ). The Seasat model yields a

dissipation that is about 4 % of the total at M2. Munk [1966] and Bell [1975] obtained

rates of 5.0 x 1018 and 2.5 x 1018 erg-s - ' respectively for the conversion to baroclinic tides

by bottom roughness. These estimates are the same order as we obtain using the Seasat

distribution.

24



Chapter 5

Conclusions

We reach the following conclusions:

1. Because barotropic signal predictions at RI, R2, and R3 compare favorably with

observations and because barotropic wave-lengths have basin-scales, the principle

discrepancy between barotropic signal predictions and observations at R4 is probably

not due to er-ors in Schwiderski's [1978] model. Furthermore, because barotropic

plus baroclinic signal predictions compare favorably with observations at R4, we

believe the Schwiderski [1978] model is adequate for barotropic predictions.

2. Seamounts may be responsible for a small (- 5 %), but non-negligible, fraction of

the dissipation of barotropic tides. The dissipation is sensitive to the heights, radii,

and numbers of seamounts (all poorly known).

3. The generation of baroclinic tides at seamounts can be accounted for with a two-

layer model of the ocean (Appendix B).

4. Barotropic tidal currents can be predicted from Schwiderski's [1978] tidal elevation

predictions with our model (Appendix A), except within ±100 of 300 North and

South (diurnal frequencies) and near 90' N (semidiurnal frequencies).

5. Comparison of measured tidal signals (from basin-scale acoustic transmissions) with

predicted tidal signals (from barotropic models) can be used to detect baroclinic

tides which are phase-locked to the ATGF.

25



6. it is diflicult to make a-tpriori predictions of ti(ld signals in I)asin-scale transmissions,

because generation regions of Iaroclinic tides are poorly map)e(d.

26



Appendix A

Obtaining Tidal Currents from

Elevations

\We solv, (3.2) for u and v by defining,

u = b, cost + b2 sin Wt, (A.1)

v = a, cosLot + a 2 sinwt,

R sin ] Ycs(A.2)

-1 ["-31 Zi coswt + Z2 sinwt,

where w is the tidal frequency of interest and a,, a 2 , bl, b2, YI, Y2, z1, and Z2 are constants.

The elevation, (, and Newton's equilibrium tide, 77, are periodic with frequencies shown

in Table A.1. The y's and z's are computed from (A.2) by expanding known functions, (

and 7;, in terms of sines and cosines. Substituting (A.1) and (A.2) in (3.2) leads to four

linear equations, in the unknowns al, a2 , bl, and b2 , which can be written in matrix form

a S,

0 -2Q cos -W kd al Y2

- kd 0 2QcosO a(A.3)
-A0 kd W b Y

kd W 2Q cos 0 b2 ZI

27



,cmi(diur(l Alodes Diurnal Aodes

Frequency Frequency
('oin ponent (cpd) Component (cpd)

M2 1.93227 K 1 1.00273
S2 2.00000 01 0.92954
N2 1.89600 P1 0.99726
K2 2.00547 Q1 0.89325

Table A.1: Major Tidal Frequencies

The solution to this matrix equation determines u and v.

We use the values,

a = .69, 3 =.90, (A.4)

derived by Schwiderski [1978], and the value of the linear damping coefficient, kd, is

selected by minimizing the phase difference between predictions of AT(t, M2, F1P) using

Schwiderski (1983] and damped LTE currents. The resulting best value is,

kd = 9.0 x 10- 6 s- 1  (A.5)

The value of kd also controls the Q of the LTE model. We estimate Q by comparing

the equations of motion to a forced linear-damped oscillator,

,2x Ox
- + k- + w x = A coswt, (A.6)

whose Q is defined as,
- WR (A.7)

where the resonant frequency is,
(L2_k2  12

WR 0 2 (A.8)

[Marion, 1970]. By letting east be the x-direction, and substituting (A.2) into (3.2), we

obtain the following x-direction momentum equation,

02x Ox
a2 + k - - fv = Yl coswt + y2sinwt, (A.9)
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where f = 2QcosO is the inertial frequency. Since,

If?'I 1.. X 10-", (A.10)
(y2 + y2)/2 4.4 x 10-7,

kdL 1 9. 0 X 10- 8 .

the dominant terms in (A.9) can be written

Ou-57t fv = 0. (A. 11)

Substituting the solution to (A.11),

v - (A. 12)

and the relation,

u iWx, (A.13)

into (A9), we obtain the approximation,

02 x Ox 2t2- + kd-- + w x - Y coswt + Y2 sinwt. (A.14)

Comparing (A.6,7,8) with (A.14) we see,
(w2 - k)1/ 2  W 1.41 X 10-4s - 1

Q 9_.X -1- =16, (A.15)
kd  kd 9.0 x 10 6 s 1

where 1.41 x 10-4s- 1 is the frequency of the M2 tide. This agrees with estimates ranging

from 5 to 25 provided by Hcndershott [1981].

A comparison of the damped LTE model with the Schwiderski [1983] model for M2

in the North Pacific ocean demonstrates good agreement (Figure A-i). Both models also

generally agree with the data presented by Luyten and Stommel [1990] extracted from

deep moored current meter records. By extension, we believe that the damped LTE

model should be an accurate first order predictor of the S2, N2, and K2 semidiurnal

currents.

The damped LTE model does not perform as well as the Schwiderski [1983] M2 current

model in the vicinity of amphidromic points. The finite difference approximations we use
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Figure A-1: The M2 barotropic tidal current in the northeast Pacific Ocean at 0600

Greenwich mean time on I January 1989 as determined from (a) the Schwiderski [1983]

model (solid arrows) (b) linear-damped Laplace tidal equations (Equation (3.2); dashed

arrows) (c) data extracted from deep moored current meter records (two arrows desig-

nated by circles around their tails). The current meter analysis is taken from Luyten and

Stommcl [1990]
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for the spatial derivatives in (3.2) are not accurate near these areas of rapidly changing

phase. These inaccuracies are limited to a 100 km (the grid size of Schwiderski's model)

radius, and the net effect on predicted travel-time change is less than 5 % in am plitude

and 3 degrees in phase for a -1000 km geodesic passing through an amphidrome.

The damped UE model has an additional difficulty for diurnal currents within a ±10'

band centered at the inertial latitude,

Of = Sil- (1k/2Q ). (A . 16)

For diurnal tides, Wk - 1 cl) and Of 30' N, and for semidiurnal tides, wk - 2 cpd and

Of 90' N. The difficulty can be seen by setting kd = 0 and solving (3.2) for u and v.

The resulting equations,

I?(4 22 cos
2 
0 a7w20)

(A. 17)

R(40
2 

cos
2 

0-w
2

)

have denominators equal to zero at the inertial latitude. These zeros are canceled by

numerator zeros when u, v, and ( are determined exactly from the same equations of nio-

tion, but a singularity occurs when the numerators are approximated by finite differences.

The finite kd we use in (3.2) removes the singularity in (A.17), but the solution is still

inaccurate near 30' N (Figure A-2).
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Figure A-2: The K1 barotropic tidal current in the northeast Pacific Ocean at 0600

Greenwich mean time on 1 January 1989 as determined from the linear-damped Laplace

tidal equations (Equation (A.2)). Note the irregular performance of the model in the

vicinity of 30.10 N.
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Appendix B

Guyot-Generated Internal Tides

lit order to determine the coupling between barotropic tidal currents and internal tides

generated by guvots, we use the two-dimensional two-layer model illustrated by Figure B-

1. This model is applicable to sea plateaus whose major horizontal extent is perpendicular

to the direction of the barotropic current. We follow the procedure used in deriving

the coupling between surface tides and coastal generated internal tides [Rattray, 1960].

Variables are a function only of the distance from the center of tile plateau (y-direction)

in this two-dimensional model.

A rigid-lid approximation is used. The momentum equations are,

atv' + fu' -0, (B.1)

at V" + fuL" -gr0y , (B.2)

at f (B .3)

atU"- fv" 0 ,

where u is the current parallel to the plateau, (') terms correspond to upper layer and (")

to lower layer terms, f is the inertial frequency, and,

gr = gAp/p, (B.4)

is reduced gravity, where,

Ap-p" -p'. (13.5)
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Figure B-i: Definition Figure for a two-layer ocean model used to predict the coupling

between a barotropic tidal current and the internal tide generated by a seamount whose

extent perpendicular to the direction of the current is considered infinite.

Subtracting (13.2) from (B.1), we find,

Ot(V' - v") + f(u' - u") gr ay', (B.6)

and the continuity equations for each layer are,

h -(', (B.7)

ay (h" V") = -at (I".

Let v, = (a/d)exp i(wt + 0), which is essentially constant for any distance y small com-

pared to the wavelength of the surface tide. We have contributions to the currents in the

two layers from both the barotropic current and the currents associated with the internal

tide. Thus,

V'=I V, + V" U' U, + ?I (".8)
,"= v', + v7' u"1 = u, + n',

and fron the rigid-lid approximation,

' O, 
(B.9)
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We choose the following solutions which satisfy (11.3) and (11.7),

Y < -1 -t < y< / > (

-I,

giIit - l(/k2y A sin k-'y 1 k 2 Y

t's 1/d2 1/dl 1/M 2

' (w/k 21W)JBe ' k2 -(ii/k h')A cos ky -(wl/k 2h')Be- ik2y
(B3.10)

v," (w/k21 2 ')I)Ok2Y (lk 1 h")A cos k, y (.4/k 2h ")Jih ik 2 y1 2

u, - if/wud 2  - if/wd -if/lwd 2

U1 (if/k 2h')Beik2y -(f/k h')A cos ky (if/k 2 h')Be- k2Y

u' -( if/k1<z )lBk2Y (f/k 2h)A cos k, y - (if/k 2hf)Ie - k2Y,

with the cominon multiplier,

a exp i +  ) .( .1

To sa isfv ( 3.6 ),

k2 - _ 2 1,2. (B1.12)

In order to patch the solutions at the edges of the plateau, (" must be continuous at y = f

and y = -[. Thus,

Be - i k2e = A sin kle. (B.13)

The solutions (13.10) already satisfy the conservation of total mass flux h' + h"v" =

dv, + h'v + v' across y = f and y = -t, but conservation of p' mass flux requires that

h'v' = h'(v, + v') be continuous also. To satisfy this requirement we let,

A = A oe - i ( o- r/ 2 ) ,

B = Boe- i ( - / 2 -k2). (B.14)

Substituting (11.14) into (13.13) leads to,

Aosink, I= Be. (13.15)

Using these relations and conservation of p' mass flux we find,

h w h' iw
-AO(sina + icoscr)sinkIt = - - -Ao(sina + icoso)cosk l i. (B.16)

d2  k2  di k1

Dy equating the imaginary part of (13.16) we obtain,

k1
tana "- tan kif, (13.17)

k2
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L/y < 1 IyI > f
Amplitude Phase(') Amplitude Phase(')

a(, Ao sin ky 0-0 +90 aBo(lYl/y) 4)- a + 90- k2(yI -f)

11's a/dl 0 a/d 2  0
I, a o cos k, y/k, Ih' 0 - a awBo/k 2h' 4)- a + 270 - k2(lyl- 0
r,' Aocoskly/klh' 0 -a+180 awBo/k 2h' 4--a+90-k 2(iyI-f)
Us, af/wdl 4 + 270 af/wd2  4 + 270
u', af cos ky/kl h' ¢ - a + 270 afBo/k 2 h' ¢ - a + 180 - k2(iyI - 0
uL' af Ao cos ky/klhkl I" - a + 90 af Bo/k 2h' - a - k 2 (yI - )

Table B.: Generalized two-layer internal wave solution for a barotropic north-south tidal
current propagating over an undersea plateau of infinite east-west extent.

and by equating the real part, we can write,

1 1 )kh'cosa
2 d wcosk(B.18)

which leads to,

B0 = ( 1 - sina. (B.19)

The result of this solution is a standing internal wave over the extent of the plateau which

patches to traveling internal waves at either end. The generalized solution is collected in

Table B.1, and the particular solution for a guyot located at 30.3'N, 222.5'E is summarized

in Table 13.2.

The cycle-average baroclinic energy density for this two-layer ocean is,

I- 1 I T 1 2 g , +t .1( U ) ) 2 2 + V 1 2

, = fT !P[((jin)g + h'(ut)2 + h'(v )2 + h1(u,) + h"(v ')2]dt, (B.20)

where T is the period of the internal tide. Substituting the Table B.1 amplitudes and

phases in (1.20) results in,

Ti ~Pgr(v.,d2 BO)2 ( f),(13.2 1)

where the resulting energy density is in joules per square meter. This baroclinic energy

propagates at a group speed that from (B.12) is given by,

W
2 _ f

2

Cgi = kw (B.22)
k2W
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M2 52
Greenwich Greenwich

Constituient Amplitude Phase(') Amplitude Phase( ° )
int 6.21 m 166 + k2y 2.08 m 202 + k2y

v, 2.3 cm-s - 1  68 0.7 cm-s - 1  104

i 1.9 cm-s - 1  346 + k2y 0.6 cm.s - 1  22 + k2y
v1. 0.3 cm.s-  166 + k 2y 0.1 cm-s - 1  202 + k2y
u, 1.2 cmis -1  158 0.4 cm.s - 1  194
u 1.0 cm-s - 1  76 + k2y 0.3 cm-s- i 112 + k2y
u;. 0.2 cm-s - ' 256 + k2y 0.1 cm-s - 1  292 + k2y

Table B.2: Two-layer M2 and S2 internal tide solutions for regions north of a 22 by 111
km undersea plateau. Seamount is located at 30.31N, 222.5'E (Figure 1-1), f = 11 kin,
dl = 2200 m, d2 = 4700 rn, h' = 700 m, g, = .0059 m-s- 2, k2(M2) = 6.41x10- m- 1

(wavelength is 98 ki), and k2(S2) = 6.71x10 - 5 m- 1 (wavelength is 94 kin).

The group speed, energy density, and horizontal extent of each seamount are combined

in (4.4) to obtain the barotropic-to-baroclinic tidal energy conversion rate. Expansion of

(4.4) in terms of fundamental parameters results in,

dE Ax ~i( )3/2dg)1/2V2 (i ) 2 (U,2 _f 2 1/2 - 2 (1.3-t p(h ) (d2gr) d2 h" -) sin 2 a, (B.23)
dt w .,h~

where,

tan= (d tan (B.24)2hl' ( [\ e . (B.24t

The internal tide in Table B.2 has an energy density and group speed of about 1.5 x 10s

erg • cm - 2 and 160 cm-s - 1 respectively. The energy density near this seamount is about

17 % of that contained in the parent barotropic tide, and the baroclinic conversion rate

is about 5.3 x 1014 erg.s - 1 (53 Mw).

The reduced gravity (B.4) used in the dispersion relation (B.12) is subject to the

choices for the representative densities p' and p" in the upper and lower layers. Values of

9r of order 10.2 m.s - 2 are typical for two-layer ocean models, but using g_ = 10-2 M's-2

is not optimal for minimizing the mean square error between the combined model and the

measured travel time signals at R4. The optimal value of reduced gravity chosen for this

model, as illustrated by Figure B2, is about 5.9 x 10- 3 m.s - 2.
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Figure B-2: Magnitude of Receiver 4 barotropic plus baroclinic signal prediction errors.

The errors are plotted as a function of reduced gravity.
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Appendix C

Baroclinic Tide Travel-Time

Model

Equation (3.5) predicts the travel-time modulation of a single multipath caused by one

seamount. The multipaths oscillate about the sound axis, and a typical wavelength (upper

plus lower loop) is 50 km. The potential sound speed gradient in the region of the Table

B.2 plateau is approximately,

OCP . 0.13s-1 above axis (C.1)
Oz 0.0s-1 below axis,

where positive z is upward. We assume the average ray path is above axis for 50 % of its

travel adjacent to the 111 km length of the plateau, so the average change in travel-time

at the M2 period is,

ATbc(t) =(6"2i(-+0 m)(0.13s- 1)(1l km) iw(t- c)+o0nt iS,
(2)(1479m s- 1 )2  21 e CO (C.2)

where 00(, is the phase of the M2 internal tide, and w is the M2 frequency.

An evaluation of N, seamount-generated tides along the geodesic between source and

receiver will produce N, baroclinic signals at each tidal frequency. The vector sum of

baroclinic models plus the barotropic model results in the combined model,

N,

Am'tot(t,wk) = ATbt(t,wk) + E ATb (n,t,wk), (C.3)
n=l
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Appendix D

Signal Processing

D.1 The Transmitted Signal

Pulse compression techniques described by Spiesbergcr et al. [1980] and Metzgcr [19831 are

utilized to increase signal-to-noise ratio without degrading the phase difference resolution.

The transmitted signal has a center frequency of 133 Iz and a bandwidth of about 17 Hz.

The center frequency is phase modulated every 8 cycles using a 511 digit maximai shift

register sequence having a period of 511(8/133) ; 30.7 s [Spiesberger et al., 1989a]. The

ideal transmitted waveform is,

7r1s(t) - so cos[2-rft - 2( rk) - 21A

[Spiesberger ct al., 1980], where f, is the center frequency, rk represents the shift register

sequence of ones and zeros, and,

k(I) = u(t - 81(D2
/=0

where u(It is the unit step function.
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D.2 Post-Detection Processing

D.2.1 Demodulation and Averaging

The received signal, z(I), can be approximated by,
N.1p

z(t) : b,,s(t - T,,), ().3)

which is the weighted suni of Nmp multipaths each having gain b., and delay rm [Spicsberger

c al., 1980]. )enodulation of the received signal is achieved by sampling at 4 - 133 liz

5:32 lIz. Samples of an ideal single-path arrival are,

z[n] cos( ,2 ) cos[2 (rk,] - 1/2)] + sin(- -) sil[ 2(rk[n] - 1/;j, (1).4)

where,

k[n] = u[n - 321]1 (D.5)
1=0

and u[n] is the unit step sequence. Because the sampling frequency is four times the

carrier frequency, the even numbered samples are the cosine of the demodulated phase

angle (weighted by ± 1) and the odd numbered samples are the sine of the demodulated

phase angle (weighted by +1). The demodulated phase angles are low-pass filtred by

block averaging to achieve a sequence of complex demodulates defined as,

CIA] = x~j] + iylj]; j = 0, 1, .J - 1, (D.6)

where the squarc root of minus one equals i,

3
x~j] E (- 1)'+j z[2(7n + 4j)], (D.7)

m0
and,

3y[j] = - (-1)"'+jz[2(m + 4j) + 1], (D.8)

M= 0

[Spicsbcrqcr ct al., 1980]. The resulting sample rate is four complex demodulates per

digit, so thei'e are J = 4 • 511 = 2044 complex demodulates per sequence. The complex

demodulates are averaged over 6 consecutive sequences in 1988 resulting in one averaged

sequence record every 184 seconds. The demodulates are averaged over 4 sequences in

1989. The signal-to-noise ratio increases by 101ogr 0 6 = 8 dB following the six-period

average in 1988 and by 10log1 4 = 6 dB following the four-period average in 1989.
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D.2.2 Replica Correlation

One period of a 66.5 ]lz sampling of (I).1) phase angles (expressed as complex deniodU-

lates) is contained in the following sequence of length J,
1 .1 1

s¢[j] = cos[-2 (rkU] - + isin[7(rk[j] - )]; j 0, 1,..., J - 1, (1).9)

where,

k[j] u - 41], (D.10)
1=0

and uUj] is the unit step sequence. The received complex demodulates (D.6) are circularly

convolved with a sequence-reversed (matched filter) replica of the transmitted delnodu-

lates ().9). The pulse-compressed output is given by.

J-1

d[m] = : c[j].g,[j + 7n]; 7n = 0, 1,...,J - 1, (D.11)
j=O

where the periodic sequence, §[j], is given by,

OT
,6[]j] = E so[j + r J], (D).12)

[Oppcnhcim and Schafc,', 1989], and s; is the complex conjugate of s. The replica

correlation (D.11) compresses 30.7 s of energy along each multipath into a single pulse

of one digit length (- 0.06 s) [Spiesberger et al., 1989a], whose amplitude and location

depend on the gain, b, and delay, 7-, in (D.3). The signal-to-noise ratio increases by

10log1 0 511 = 27 dB following pulse compression, and a sliding average of 4 complex

samples (separated by 0.015 s) increases the signal-to-noise ratio by another 6 d13 at the

cost of some resolution [Spiesberger ct al., 1989a].

D.2.3 Phase Change Between Sequence Records

The change in phase of the mth pulse-compressed demodulate from record r - 1 to r is

given by the phase of,

d[m, r - ]d[m, r].

The average change in phase from record r - 1 to r is given by Ihe ph

Al
Ac Ok[rl -j d[m, r - I]d[,. r], (D.13)

3=0

,13



where there are A! demodulates containing a signal [Spiesbci'qcr ct al., 1989a]. The phase

in ().13) is referred to as the cross-correlated phase, because it is the phase of the complex

cross correlation of adjacent pulse-compressed records at zero-lag. The cross-correlated

phase can be converted to the average travel-time difference between records using (2.1).

The precision of the resulting estimation of travel-time difference is about 135 /is [Spies-

crgcr dt al., 1989a].
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